太阳电池的发展现状 

作者: | 发布日期: 2018 年 03 月 30 日 17:43 | 分类: 行业知识

太阳电池的进展情况可以从其性能指标、产量、价格等方面来评价。太阳电池的性能指标有开路电压、短路电流、填充因子、光电转换效率等多顶,其中最主要的指标是光电转换效率,即将光能转变为电能的效率。

太阳电池主要可以分为硅太阳电池和化合物半导体太阳电池两大类。下面分别加以叙述。

一、硅太阳电池 

硅是地球上第二位最丰富的元素,而且无毒性,用它制作的太阳电池效率也很高,因此它是最适于制作太阳电池的半导体材料。1997年,世界上太阳电池年产量约为120MW,其中99%以上为硅太阳电池。在硅太阳电池中又可分为单晶硅、多晶硅和非晶硅太阳电池三类。

1.单晶硅和多晶硅太阳电池 

单晶硅和多晶硅太阳电池是对P型(或n型)硅基片经过磷(或硼)扩散做成P/N结而制得的。单晶硅太阳电池效率高、寿命长、性能优良,但成本高,而且限于单晶的尺寸,单片电池面积难以做得很大,目前比较大的为直径为10~20cm的圆片.多晶硅电池是用浇铸的多晶硅锭切片制作而成,成本比单晶硅电池低,单片电池也可以做得比较大(例如30cm×30cm的方片),但由于晶界复合等因素的存在,效率比单晶硅电池低。

现在,单晶硅和多晶硅电池的研究工作主要集中在以下几个方面:

(1)用埋层电极、表面钝化、密栅工艺优化背电场及接触电极等来减少光生载流子的复合损失,提高载流子的收集效率,从而提高太阳电池的效率。澳大利亚亲南威尔士大学格林实验室采用了这些方法,已经创造了目前硅太阳电池世界公认的AM1.5条件下24%的最高效率。

(2)用优华抗射膜、凹凸表面、高反向背电极等方式减少光的反射及透射损失,以提高太阳电池效率。

(3)以定向凝固法生长的铸造多晶硅锭代替单晶硅,估化正背电极的银浆、铝浆的丝网印制工艺,改进硅片的切、磨、抛光等工艺,千方百计降低成本,提高太阳电池效率。目前最大硅锭重量已达270余公斤。

(4)薄膜多晶硅电池还在大力研究和开发。计算表明,若能在金属、陶瓷、玻璃等基板上低成本地制备厚度为30~50μm的大面积的优质多晶硅薄膜,则太阳电池制作工艺可进一步简化,成本可大幅度降低。因此多晶硅薄膜太阳电池正成为研究热点。

现在单晶及多晶硅太阳电池的世界年产量已达到120MW左右。硅太阳电池的最高效率可达18%~24%。航空航天用的高质量太阳电池在AMO条件下的效率约为13.5%~18%,而地面用的大量生产的太阳电池效率在AM1条件下大多在11%~18%左右。

2.非晶硅太阳电池 

由于非晶硅对太阳光的吸收系数大,因而非昌硅太阳电池可以做得很薄,通常硅膜厚度仅为1-2μm,是单晶硅或多晶硅电池厚度(0.5mm左右)的1/500,所以制作非晶硅电池资源消耗少。

非晶硅太阳电池一般是用高频辉光放电等方法使硅烷(SiH4)气体分解沉积而成的。由于分解沉积温度低(200℃左右),因此制作时能量消耗少,成本比较低,且这种方法适于大规模生产,单片电池面积可以做得很大(例如0.5mX1.0m),整齐美观。非晶硅电池的另一特点是对蓝光响应好,在一般地荧光灯下也能工作,因此被广泛用作电子计算器和手掌电脑的电源,估计全世界使用量达到每月1千万片左右。以上这些优点,使非晶硅太阳电池在近10余年来得到大踏步的发展,1997年全世界的产量估计已达到30MW以上。

非晶硅由于其内部结构的不稳定性和大量氢原子的存,具有光疲劳效应(Staebler Wronski效应),故非晶硅太阳电池经过长期稳定性存在问题。近10年来经努力研究,虽有所改善,但尚未彻底解决问题,故作为电力电源,尚未大量推广。

非晶硅中由于原子排列缺少结晶硅中的规则性,缺陷多。因此单纯的非晶硅p/n结中,隧道电流往往占主导地位,使其呈现电阴特性,而无整流特性,也就不能制作太阳电池。为得到好的二极管整流特性,一定要在p层与n层之间加入较厚的本征层i,以扼制其隧道电流,所以非晶硅太阳电池一般具有pin结构。为了提高
效率和改善稳定性,有时还制作成pin/pin/pin等多层结构式的叠层电池,或是插入一些过渡层。

非晶硅太阳电池的研究,现在主要着重于改善非晶硅膜本身性质,以减少缺陷密度,精确设计电池结构和控制各层厚度,改善各层之间的界面状态,以求得高效率和高稳定性。

目前非晶硅单结电池的最高效率已可达到14.6%左右,大量生产的可达到8%~10%左右。叠层电池的最高效率可达到21.0%。

二、化合物半导体太阳电池 

在化合物半导体太阳电池中,目前研究应用较多的有CaAs、InP、CuInSe2和CdTe太阳电池。由于化合物半导体或多或少有毒性,容易造成环境污染,因此产量少,常常使用在一些特殊场合。

1.砷化钾太阳电池 

砷化钾(GaAs)太阳电池可以得到较高的效率,实验室最高效率已达到24%以上,一般航天用的太阳电池效率也在18%~19.5%之间。砷化钾太阳电池目前大多用液相外延方法或金属有机化学气相沉积(MOCVD)技术制备,因此成本高、产量受到限制,降低成本和提高生产效率已成为研究重点。砷化钾太阳电池目前主要用在航天器上。

现在,硅单晶片制备技术成熟,成本低,因此以硅片为衬底,以MOCVD技术用异质外延方法制造GaAs太阳电池降低GaAs太阳电池成本的很有希望的办法。目前,这种电池的效率也已达到20%以上。但GaAs和Si晶体的晶格常数相关较大,在进行导质外延生长时,外延层晶格失配严重,难以获得优质外延层。 为此常Si衬底上首先生长一层晶格常数与GaAs 相差较少的Ge 晶体作为过渡层,然后再生长GaAs外延层,这种Si/Ge/GaAs结构的异质外延电池正在不断发展中。控制各层厚度,适当变化结构,可使太阳光中各种波长的光子能量都得到有效利用,目前以GaAs为基的多层结构太阳电池的效率已接近40%。

2.磷化铟太阳电池:磷化铟太阳电池具有特别好的抗辐照性能,因此在航天应用方面受到重视,目前这种电池的效率也已达到17%~19%。

3.CuInSe2 多晶薄膜太阳电池:这种电池的效率也达到17.6%左右,而且性能稳定,作为多晶薄膜电池是很有发展前途的。但因成分较复杂,制作工艺重复性差,影响了它的发展。

此外,Cds/CdTe太阳电池的效率也已达到15.8%,但这种电池毒性大,易造成对环境的污染。

Share
【免责声明】
  • 1、EnergyTrend-集邦新能源网」包含的内容和信息是根据公开资料分析和演释,该公开资料,属可靠之来源搜集,但这些分析和信息并未经独立核实。本网站有权但无此义务,改善或更正在本网站的任何部分之错误或疏失。
  • 2、任何在「EnergyTrend-集邦新能源网」上出现的信息(包括但不限于公司资料、资讯、研究报告、产品价格等),力求但不保证数据的准确性,均只作为参考,您须对您自主决定的行为负责。如有错漏,请以各公司官方网站公布为准。
  • 3、「EnergyTrend-集邦新能源网」信息服务基于"现况"及"现有"提供,网站的信息和内容如有更改恕不另行通知。
  • 4、「EnergyTrend-集邦新能源网」尊重并保护所有使用用户的个人隐私权,您注册的用户名、电子邮件地址等个人资料,非经您亲自许可或根据相关法律、法规的强制性规定,不会主动地泄露给第三方。
【版权声明】
  • 「EnergyTrend-集邦新能源网」所刊原创内容之著作权属于「EnergyTrend-集邦新能源网」网站所有,未经本站之同意或授权,任何人不得以任何形式重制、转载、散布、引用、变更、播送或出版该内容之全部或局部,亦不得有其他任何违反本站著作权之行为。